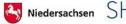
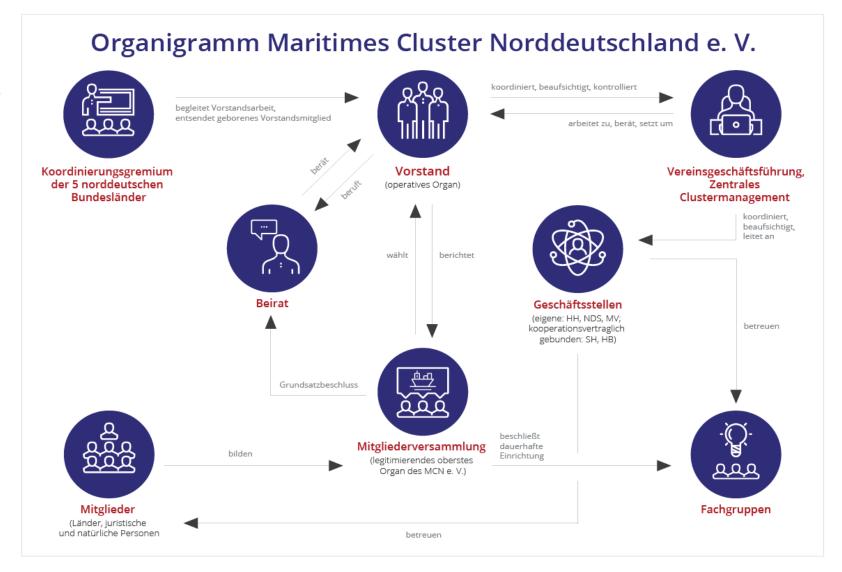
Alternative Brennstoffe in der Schifffahrt

- ein Vergleich -


Henning Edlerherr | MCN

Workshop H₂ an Bord – Hype oder Hoffnung? 09. Oktober 2025

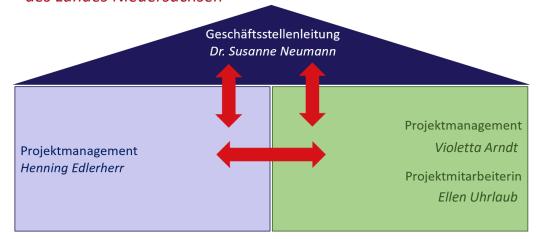
Das Maritime Cluster Norddeutschland


Gründung **2011**; seit **2017** e. V.

Fast **400** Mitglieder aus Wirtschaft, Wissenschaft und Politik

23 hauptamtlich Mitarbeitende

Das Maritime Cluster Norddeutschland Die Geschäftsstellen



Jede Geschäftsstelle ist besonders – alle zusammen schaffen ein einzigartiges Angebot

Besondere Organisationsstruktur der Geschäftsstelle Niedersachsen

Neben Mitteln für das MCN: Sonderprojekt "GreenShipping Niedersachsen" -> Förderung aus Mitteln des Wirtschaftsförderfonds des Landes Niedersachsen

MCN e. V.

Wer sind wir?

Netzwerk mit bald 400 Mitgliedern aus Politik, Wirtschaft und Wissenschaft Anovasions-Entwicklungs-Lonal Andrews Suntanistrations of the state of maritimes cluster Unterstützung bei der **Suche nach geeigneter Förderung**

Studien, Publikationen, Positionspapiere, Messeauftritte, Marketing

Konferenzen, Workshops, Messeauftritte, sonstige Veranstaltungen und Exkursionen

> Initiierung innovativer Projekte und deren Begleitung

Unternehmensgespräche/-besuche

Bearbeitung aktueller Forschungs-

Beispielhafte Themen und Projekte

- Pionier-Rolle beim Thema Methanol als Brennstoff in Deutschland
- Motorenentwicklung und Systeme zur Beimischung von grünem Methanol in bestehende Dieselinfrastruktur an Bord
- umweltfreundlichere Drop-In Brennstoffe (z. B. FAME, HVO)
- Betriebsoptimierung (z. B. Antifouling)
- Maritime Sicherheit (z.B. Anti-Jamming / Anti-Spoofing-Technologien)

Nachhaltigkeit entlang der maritimen Wertschöpfungskette (Kreislaufwirtschaft,

Schiffsrecycling)

Kompetenzzentrum GreenShipping Niedersachsen

- **GreenShipping Niedersachsen**
 - Niedersachsen

- Eröffnungsdatum: 26. August 2015
- Anlass: Die rot-grüne Koalition wird ein Kompetenzzentrum für "GreenShipping" aufbauen, das in Zukunft alle Aktivitäten in Niedersachsen zugunsten ressourcenschonender Schifffahrt (Schiffbau, Reedereiwirtschaft, Hafenwirtschaft) koordiniert

> 30 Projektinitiierungen

2 neue Partnerinstitutionen

Konferenzen, Workshops, Messen, Exkursionen...

...auf über 40 Veranstaltungen können Sie mitdiskutieren, sich austauschen, Ihr Netzwerk erweitern, Neues kennenlernen

Cyber Security for Maritime Infrastructures

Mein Betrieb

Fit for Future?

Digitale Transportdokumente – Praxis trifft Wissenschaft

Zugang zu internationalen Offshore-Windmärkten

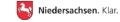
Workshop Design Thinking und Kreativitätsmethoden

Managerhaftpflicht als Instrument zur

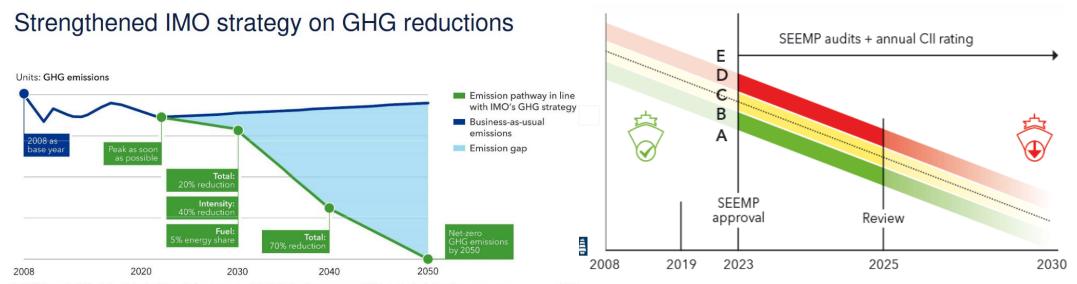
Wie digitale Assistenzsysteme ihren Beitrag zur

Shipping

Kongress

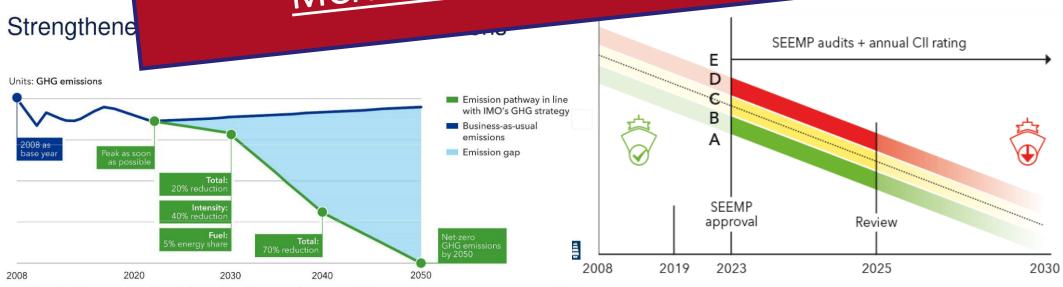

Nachhaltigkeit leisten können

Alternative Brennstoffe: Methanol 2.0



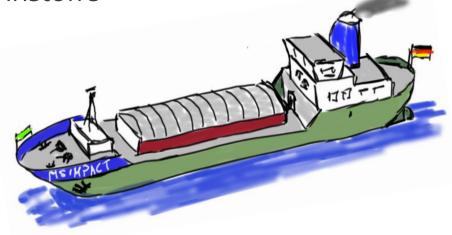
Handlungsbedarf Dekarbonisierung - IMO!

- IMO: Strategie zur Reduktion von Treibhausgasen in der Schifffahrt
- Erste Maßnahmen: 1) Energieeffizienzindex **EEDI** für Neubauten 2) Neu 2023: Energieeffizienzindex **EEXI** für Bestandsschiffe, Carbon Intensity Indicator (**CII**)
- Kommende Maßnahmen: ab 2027: IMO net framework / global fuel standard
- EEDI und EEXI beziehen sich auf den Schiffbau, der CII auf den Schiffsbetrieb
- CII: Einteilung von Schiffen nach "Energieeffizienzklassen"

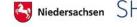


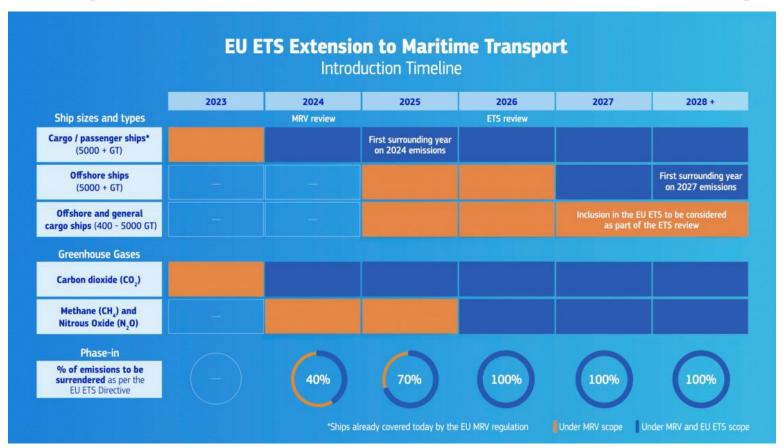
Handlungsbedarf Dekarbonisierung - IMO!

- IMO: Strategie zur Reduktion von Treibhausgasen in der Schifffahrt
- Erste Maßnahmen: 1) Energieeffizienzindex EEDI für Neubauten 2) Neu 2023: Energieeffizienzindex EEXI für Bestandsschiffe, Carbon Intensity Indianalist
- Kommende Maßnahmen: ab 2027: IMO management in the second se
- EEDI und EEVI
- CII: Eint


MCN Ship Ship Efficiency Guide

Handlungsbedarf Dekarbonisierung – EU!


- **EU**: Maßnahmenpaket "Fit for 55" => schrittweise Senkung der Netto-Treibhausgas-Emissionen
- Verordnung Fuel EU Maritime => Anreize für die Nutzung grüner Brennstoffe
- Taxonomie-Verordnung
- Aufnahme eines Teils der Schifffahrt (>5000 GT) in das Emissionshandelssystem ETS
- Infrastruktur Verordnung => Schaffung einer Infrastruktur zum Bunkern alternativer Brennstoffe



Handlungsbedarf Dekarbonisierung – EU!

Klassifizierung von "future fuels"

- We want to set out the path to sustainable shipping
- That means: aiming, long-term, for a chain energy source – energy carrier – energy converter that is

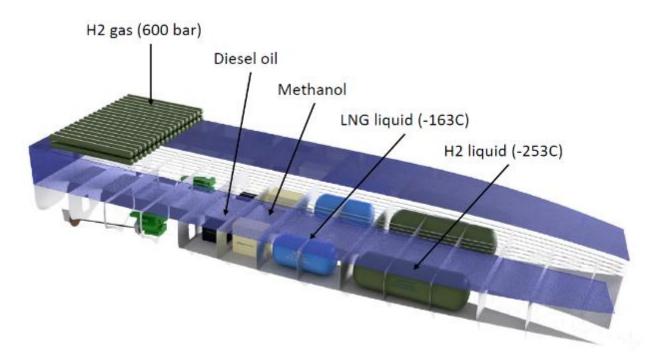
Sustainable

- Source: solar, wind, bio, ...
- Closed cycle for energy carrier and converter materials

Scalable

- Use abundantly available resources
- Also implies affordable

My "Triple S" criteria for assessing any option


Storable

High energy and power density: need range & payload

Quelle: Prof. Dr. Sebastian Verhelst, Ghent University

Platzbedarf an Bord?

Quelle: ScandiNAOS AB

Brennstoff	Volumen- Faktor
Diesel	1
Methanol	2
LNG	3
Ammoniak	3-4
H ₂ tiefkalt	7
H ₂ unter Druck	9

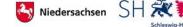
Vergleich heute

Brennstoff	Luftreinheit	Klimaschutz	Techn. Aufwand an Bord	Storage an Bord	Skalierbarkeit der Produktion	Herstellungs- prozss Komplexität	Infrastruktur	Regularien	Wirtschaftlich- keit
Diesel ohne AGN						N/A			
Diesel mit AGN						N/A			
LNG (EE-Methan)		Methan- Emissionen							
Methanol (grün)		Formaldehyd				CO₂-Quelle			
Ammoniak (grün)		Lachgas							
HVO		Rohstoffe							
FAME		Rohstoffe							
H ₂ flüssig		Verflüssigung							
H ₂ gasförmig		Kompression							

Vergleich Zukunft

Brennstoff	Luftreinheit	Klimaschutz	Techn. Aufwand an Bord	Storage an Bord	Skalierbarkeit der Produktion	Herstellungs- prozss Komplexität	Infrastruktur	Regularien	Wirtschaftlich- keit (Zukunft)
Diesel ohne AGN						N/A			
Diesel mit AGN						N/A			
LNG (EE-Methan)		Methan- Emissionen							
Methanol (grün)		Formaldehyd				CO ₂ -Quelle			
Ammoniak (grün)		Lachgas							
HVO		Rohstoffe							
FAME		Rohstoffe							
H ₂ flüssig		Verflüssigung							
H ₂ gasförmig		Kompression							

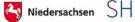
Die Rolle von H₂ in der Schifffahrt



- Aktuell klarer Fokus auf Biokraftstoffe (kurzfristig) und Derivate wie Methanol und Ammoniak (mittel- bis langfristig)
- Wasserstoff derzeit noch für Nischenanwendungen (Pilotprojekte in der Binnenschifffahrt, Offshore-Fahrzeuge, Spezialschiffe)
- Aber: H₂-Derivate sind derzeit kaum verfügbar und teuer. Der Aufbau einer Bunkerinfrastruktur steckt in den Kinderschuhen.
- Wasserstoff wird hingeben perspektivisch mit hoher Wahrscheinlichkeit in den Häfen verfügbar sein, sodass es wichtig ist auch die direkte Nutzung an Bord weiter im Blick zu behalten – aller damit verbundenen technischen Herausforderungen zum Trotz.
- MCN ist daher seit Anfang 2025 Partner im europäischen Projekt NavHyS.

Projekt NavHyS

- Europäische Initiative von ArianeGroup (koordiniert, von EU & Clean Hydrogen Partnership gefördert) zur Entwicklung von Flüssigwasserstoff-Lösungen für die Schifffahrt
- Laufzeit 01/2025 12/2027
- Zielsetzung: Entwicklung eines LH₂-Speicher- und Treibstoffsystems für Service Operation Vessels (SOV) zur dekarbonisierten Wartung von Offshore-Windparks
- Innovation & Kompetenztransfer: Nutzung von Raumfahrt-Know-how (Ariane-Raketen) für maritime Anwendungen – bahnbrechend im Vergleich zu bisherigen Projekten
- Konsortium: Breite Allianz aus Raumfahrt, Schiffbau, Energie, Sicherheit und Forschung
- Ziel: Entwicklung / Erprobung / Markteinführung



Vielen Dank für Ihr Interesse!

MCN-Geschäftsstelle Niedersachsen

An der Weinkaje 4, 26931 Elsfleth

E-Mail: NI@maritimes-cluster.de

